Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2776: 43-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502497

RESUMO

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.


Assuntos
Apicoplastos , Parasitos , Plasmodium , Toxoplasma , Animais , Humanos , Apicoplastos/genética , Apicoplastos/metabolismo , Simbiose , Toxoplasma/genética , Toxoplasma/metabolismo
2.
Methods Mol Biol ; 2776: 197-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502506

RESUMO

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Parasitos/metabolismo , Plastídeos/metabolismo , Ácidos Graxos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas de Protozoários/metabolismo
3.
mBio ; 15(4): e0042724, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501871

RESUMO

Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in ß-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal ß-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.


Assuntos
Malária , Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/metabolismo , Toxoplasmose/parasitologia , Ácidos Graxos/metabolismo , Nutrientes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Front Cell Infect Microbiol ; 13: 997245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089812

RESUMO

Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Fosfolipases/metabolismo , Mitofagia , Fosfatidilgliceróis/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/metabolismo , Parasitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498912

RESUMO

Extracellular vesicles (EVs) are critical elements of cell-cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their ancestor, the evolved clones produce small OMVs but also larger ones which display variable amounts of both OmpA and LPS. Tracking ancestral, fluorescently labelled OMVs revealed that they fuse with both ancestral- and 50K-evolved cells, albeit in different proportions. We quantified that less than 2% of the cells from one 50K-evolved clone acquired the fluorescence delivered by OMVs from the ancestral strain but that one cell concomitantly fuses with several OMVs. Globally, our results showed that OMV production in E. coli is a phenotype that varies along bacterial evolution and question the contribution of OMVs-mediated interactions in bacterial adaptation.


Assuntos
Escherichia coli , Vesículas Extracelulares , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética
6.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430266

RESUMO

The microbiota constitutes an important part of the holobiont in which extracellular vesicles (EVs) are key players in health, especially regarding inter- and intra-kingdom communications. Analysis of EVs from the red blood cell concentrates of healthy donors revealed variable amounts of OmpA and LPS in 12 of the 14 analyzed samples, providing indirect experimental evidence of the presence of microbiota EVs in human circulating blood in the absence of barrier disruption. To investigate the role of these microbiota EVs, we tracked the fusion of fluorescent Escherichia coli EVs with blood mononuclear cells and showed that, in the circulating blood, these EVs interacted almost exclusively with monocytes. This study demonstrates that bacterial EVs constitute critical elements of the host-microbiota cellular communication. The analysis of bacterial EVs should thus be systematically included in any characterization of human EVs.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Nível de Saúde , Eritrócitos , Monócitos , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...